top of page
Published Articles

You are here: Home \ Published Articles

sh.png
Advancements in Understanding the Hide-and-Seek Strategy of Hibernating Breast Cancer Cells and Their Implications in Oncology from a Broader Perspective: A Comprehensive Overview.

Abstract:

​Despite recent advancements in technology, breast cancer still poses a significant threat, often resulting in fatal consequences. While early detection and treatments have shown some promise, many breast cancer patients continue to struggle with the persistent fear of the disease returning. This fear is valid, as breast cancer cells can lay dormant for years before remerging, evading traditional treatments like a game of hide and seek. The biology of these dormant breast cancer cells presents a crucial yet poorly understood challenge in clinical settings. In this review, we aim to explore the mysterious world of dormant breast cancer cells and their significant impact on patient outcomes and prognosis. We shed light on the elusive role of the G9a enzyme and many other epigenetic factors in breast cancer recurrence, highlighting its potential as a target for eliminating dormant cancer cells

pexels-anntarazevich-8016917.jpg

and preventing disease relapse. Through this comprehensive review, we not only emphasise the urgency of unravelling the dynamics of dormant breast cancer cells to improve patient outcomes and advance personalised oncology but also provide a guide for fellow researchers. By clearly outlining the clinical and research gaps surrounding dormant breast cancer cells from a molecular perspective, we aim to inspire further exploration of this critical area, ultimately leading to improved patient care and treatment strategies.

 

Doi:

10.3390/cimb46080492

A Comprehensive Pan-Cancer Analysis Reveals Cyclin-Dependent Kinase Inhibitor 2A Gene as a Potential Diagnostic and Prognostic Biomarker in Colon Adenocarcinoma.

Abstract:

​

Introduction: Cyclin-dependent kinase inhibitor 2A (CDKN2A) is a suppressor carcinogenic gene that is upregulated across various types of cancer including breast, liver, thyroid, and bile duct cancer due to its crucial role in cell cycle regulation and cell division. Nevertheless, it is mostly investigated at the genetic level, but it is still poorly studied on pan-cancer analysis as a biomarker and this study shows its significant potential diagnostic and prognostic characteristics. However, this study aims to investigate the role of CDKN2A as a diagnostic and prognostic biomarker across various types of cancer focusing primarily on colon adenocarcinoma (COAD).

 

Methods: We investigated CDKN2A gene expression in a pan-cancer analysis across different types of cancer to show its diagnostic potential characteristics by using various bioinformatic

diagnostic potential characteristics by using various bioinformatic tools, including Tumor Immune Estimation Resource (TIMER) 2.0, Gene Expression Profiling Interactive Analysis (GEPIA), and University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) database. TIMER was used to profile gene expression across 32 types of cancer composed of 10,000 RNA-seq samples obtained from the Cancer Genome Atlas (TCGA) and to analyze the tumor-infiltrating immune cells. In addition, GEPIA and UALCAN were further used to analyze gene expression, in terms of gene regulation, pathological stages, and clinical parameters, including gender, age, and race. Therefore, we used GEPIA, UALCAN, and Kaplan-Meier plotter particularly across adenocarcinoma to investigate CDKN2A prognosis by studying its high expression association with the patient’s overall survival rate to show the tumor progression. Then, we looked into the genetic alteration of CDKN2A by using the cBio Cancer Genomics Portal (cBioPortal), including 10 pan-cancer studies. We concluded the analysis with gene validation by using a public cohort in Gene Expression Omnibus (GEO).

 

Results: CDKN2A showed a trend of upregulation in most cancers and it was significantly upregulated in five cancers, which were commonly identifiable in three databases, including breast invasive carcinoma (p < 0.001), kidney chromophobe (p < 0.001), kidney renal clear cell carcinoma (p < 0.001), kidney renal papillary cell carcinoma (p < 0.001), and COAD (p < 0.001). The upregulation was significantly different in association with pathogenic stages II and III (pr(>F) = 0.00234) which was identifiable significantly in COAD more than in other cancers. The gene showed a high upregulation in association with poor prognosis of patient survival in three cancers, including COAD (log-rank p = 0.011), mesothelioma (log-rank p = 5.9e−07), and liver hepatocellular carcinoma (log-rank p = 0.0045). Therefore, COAD was the only comprehensively analyzed tumor to show a diagnostic and prognostic potential characteristic during high upregulation of CDKN2A. Furthermore, CDKN2A displayed a rare mutation in the form of deep deletion (9%) and revealed an upregulation associated with CD4+ T cells (p = 0.0108), macrophage (p = 0.0073), and neutrophils (p = 0.0272) as immune cells infiltrating COAD.

 

Conclusion: Our study demonstrates the pan-cancer relevance of CDKN2A and revealed a novelty in showing CDKN2A underscores its potential as a diagnostic prognostic biomarker in COAD since CDKN2A is mostly studied at a genetic level across COAD.

 

Doi:

10.7759/cureus.60586

​Identification of the Hub Genes Involved in Chikungunya Viral Infection.

Abstract:

​

Background: Chikungunya virus (CHIKV) infection poses a significant global health threat, necessitating a deeper understanding of its molecular mechanisms for effective management and treatment. This study aimed to understand the molecular and genetic mechanisms of CHIKV infection by analyzing microarray expression data.

 

Methodology: National Center for Biotechnology Information (NCBI) GEO2R with an adjusted p-value cut-off of <0.05 and |log2FC ≥ 1.5| was used to identify the differentially expressed genes involved in CHIKV infection using microarray data from the Gene Expression Omnibus (GEO) database, followed by enrichment analysis, protein-protein interaction (PPI) network construction, and, finally, hub gene identification.

 

Results: Analysis of the microarray dataset revealed 25 highly significant differentially expressed genes (DEGs), including 21

Abstract:significant differentially expressed genes (DEGs), including 21 upregulated and four downregulated genes. PPI network analysis elucidated interactions among these DEGs, with hub genes such as ACTB and CTNNB1 exhibiting central roles. Enrichment analysis identified crucial pathways, including leukocyte transendothelial migration, regulation of actin cytoskeleton, and thyroid hormone signaling, implicating their involvement in CHIKV infection. Furthermore, the study highlights potential therapeutic targets such as ACTB and CTNNB1, which showed significant upregulation in infected cells.

 

 

Conclusions: These findings underscore the complex interplay between viral infection and host cellular processes, shedding light on novel avenues for diagnostic marker discovery and advancing antiviral strategies. In this study, we shed light on the molecular and genetic mechanisms of CHIKV infection and the potential role of ACTB and CTNNB1 genes.

 

Doi:

doi.org/10.7759/cureus.57603

bottom of page